Deep Within-Class Covariance Analysis for Acoustic Scene Classification

نویسندگان

  • Hamid Eghbal-zadeh
  • Matthias Dorfer
  • Gerhard Widmer
چکیده

Within-Class Covariance Normalization (WCCN) is a powerful post-processing method for normalizing the within-class covariance of a set of data points. WCCN projects the observations into a linear sub-space where the within-class variability is reduced. This property has proven to be beneficial in subsequent recognition tasks. The central idea of this paper is to reformulate the classic WCCN as a Deep Neural Network (DNN) compatible version. We propose the Deep WithinClass Covariance Analysis (DWCCA) which can be incorporated in a DNN architecture. This formulation enables us to exploit the beneficial properties of WCCN, and still allows for training with Stochastic Gradient Descent (SGD) in an endto-end fashion. We investigate the advantages of DWCCA on deep neural networks with convolutional layers for supervised learning. Our results on Acoustic Scene Classification show that via DWCCA we can achieves equal or superior performance in a VGG-style deep neural network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic Scene Classification Based on Convolutional Neural Network Using Double Image Features

This paper proposes new image features for the acoustic scene classification task of the IEEE AASP Challenge: Detection and Classification of Acoustic Scenes and Events. In classification of acoustic scenes, identical sounds being observed in different places may affect performance. To resolve this issue, a covariance matrix, which represents energy density for each subband, and a double Fourie...

متن کامل

Generative Adversarial Network Based Acoustic Scene Training Set Augmentation and Selection Using Svm Hyper-plane

Although it is typically expected that using a large amount of labeled training data would lead to improve performance in deep learning, it is generally difficult to obtain such DataBase (DB). In competitions such as the Detection and Classification of Acoustic Scenes and Events (DCASE) challenge Task 1, participants are constrained to use a relatively small DB as a rule, which is similar to th...

متن کامل

Deep Neural Network Bottleneck Feature for Acoustic Scene Classification

Bottleneck features have been shown to be effective in improving the accuracy of speaker recognition, language identification and automatic speech recognition. However, few works have focused on bottleneck features for acoustic scene classification. This report proposes a novel acoustic scene feature extraction using bottleneck features derived from a Deep Neural Network (DNN). On the official ...

متن کامل

Ensemble Of Deep Neural Networks For Acoustic Scene Classification

Deep neural networks (DNNs) have recently achieved great success in a multitude of classification tasks. Ensembles of DNNs have been shown to improve the performance. In this paper, we explore the recent state-of-the-art DNNs used for image classification. We modified these DNNs and applied them to the task of acoustic scene classification. We conducted a number of experiments on the TUT Acoust...

متن کامل

Pairwise Decomposition with Deep Neural Networks and Multiscale Kernel Subspace Learning for Acoustic Scene Classification

We propose a system for acoustic scene classification using pairwise decomposition with deep neural networks and dimensionality reduction by multiscale kernel subspace learning. It is our contribution to the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2016). The system classifies 15 different acoustic scenes. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04022  شماره 

صفحات  -

تاریخ انتشار 2017